Exercise 65

At what points on the curve $y=\sin x+\cos x, 0 \leq x \leq 2 \pi$, is the tangent line horizontal?

Solution

Start by calculating the derivative.

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x}(\sin x+\cos x) \\
& =\frac{d}{d x}(\sin x)+\frac{d}{d x}(\cos x) \\
& =(\cos x)+(-\sin x) \\
& =\cos x-\sin x
\end{aligned}
$$

Set the result equal to zero.

$$
\begin{gathered}
\cos x-\sin x=0 \\
\cos x=\sin x
\end{gathered}
$$

The values of x between 0 and 2π that satisfy this equation are

$$
x=\frac{\pi}{4} \quad \text { and } \quad x=\frac{5 \pi}{4} .
$$

Determine the corresponding y-coordinates by plugging these values of x back into the given function.

$$
\begin{aligned}
& x=\frac{\pi}{4}: \quad y=\sin \frac{\pi}{4}+\cos \frac{\pi}{4}=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}=\sqrt{2} \\
& x=\frac{5 \pi}{4}: \quad y=\sin \frac{5 \pi}{4}+\cos \frac{5 \pi}{4}=-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}=-\sqrt{2}
\end{aligned}
$$

Therefore, the points on the curve that have horizontal tangent lines are

$$
\left(\frac{\pi}{4}, \sqrt{2}\right) \quad \text { and } \quad\left(\frac{5 \pi}{4},-\sqrt{2}\right) .
$$

Below is a graph of the curve and these horizontal tangent lines over $0 \leq x \leq 2 \pi$.

